

1 Highly resolved mapping of NO2 vertical column densities from

2 GeoTASO measurements over a megacity and industrial area during

the KORUS-AQ campaign

- 4 Gyo-Hwang Choo¹, Kyunghwa Lee¹, Hyunkee Hong^{1*}, Ukkyo Jeong^{2,3}, Wonei Choi⁴, Scott J. Janz³
- ⁵ Environmental Satellite Center, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, Republic
- 6 of Korea, 22689
- 7 ²Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA 20740
- 8 ³NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 20771
- 9 ⁴Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University,
- 10 Busan 48513, South Korea
- 11 Correspondence to: Hyunkee Hong; Tel: +82 32 560 8437; Fax: +82 32 560 8460; E-mail address: wanju77@korea.kr
- 12 **Abstract.** The Korea-United States Air Quality (KORUS-AQ) campaign is a joint study between the United States National
- 13 Aeronautics and Space Administration (NASA) and the South Korea National Institute of Environmental Research (NIER) to
- 14 monitor megacity and transboundary air pollution around the Korean Peninsula using airborne and ground-based
- 15 measurements. Here, tropospheric nitrogen dioxide (NO₂) slant column density (SCD) measurements were retrieved from
- 16 Geostationary Trace and Aerosol Sensor Optimization (GeoTASO) L1B data during the KORUS-AQ campaign (May 1 to
- 17 June 10, 2016). The retrieved SCDs were converted to tropospheric vertical column densities using the air mass factor (AMF)
- 18 obtained from a radiative transfer calculation with trace gas profiles and aerosol property inputs simulated with the Community
- 19 Multiscale Air Quality (CMAQ) model and surface reflectance data obtained from the Moderate Resolution Imaging
- 20 Spectroradiometer (MODIS). For the first time, we examine highly resolved (250 m × 250 m resolution) tropospheric NO₂
- 21 over the Seoul and Busan metropolitan regions, and the industrial regions of Anmyeon. We reveal that the maximum NO₂
- VCDs were 4.94×10^{16} and 1.46×10^{17} molecules cm⁻² at 9 AM and 3 PM over Seoul, respectively, 6.86×10^{16} and 4.89×10^{16}
- 10^{16} molecules cm⁻² in the morning and afternoon over Busan, respectively, and 1.64×10^{16} molecules cm⁻² over Anmyeon.
- 24 The data retrieved from the GeoTASO airborne instrument were well correlated with those obtained from the Ozone
- 25 Monitoring Instrument (OMI) (r = 0.65), NASA's Pandora Spectrometer System (r = 0.84), and NO₂ mixing ratios obtained
- 26 from in situ measurements (r = 0.78 in the afternoon). Based on our results, GeoTASO is useful for identifying hotspots of
- 27 NO₂ and its spatial distribution in highly populated cities and industrial areas.

1 Introduction

- 29 Nitrogen dioxide (NO₂) is one of the most important atmospheric trace gases and plays a key role in aerosol production and
- 30 tropospheric ozone photochemistry (Boersma et al., 2004; Richter et al., 2005). Furthermore, high NO₂ concentrations in the

- 31 atmosphere have adverse effects on human health, such as respiratory infections and associated symptoms (Brauer et al., 2002;
- 32 Latza et al., 2009).
- 33 The major sources of NO₂ in the atmosphere are from fossil fuel combustion from vehicles and thermal power plants, lightning,
- 34 flash production, and biogenic soil processes. In addition, it has been found that NO₂ concentrations are highly correlated with
- 35 population size (Lamsal et al., 2013). The implementation of emission control technology and environmental regulation has
- 36 led to a decrease in surface NO₂ concentrations in Western Europe, the United States, and Japan in the last few decades (Richter
- 37 et al., 2005). The NO₂ concentration over major metropolitan cities in South Korea and China are over 3 times larger than over
- 38 similarly size cites in Europe and United States, despite NO₂ concentration decreasing in China and South Korea (de Foy et
- 39 al., 2016, Choo et al., 2020).
- 40 To date, several low-orbit space borne sensors, such as the Global Ozone Monitoring Experiment (GOME) (Burrows et al.,
- 41 1999), the Scanning Imaging Spectrometer for Atmospheric Cartography (SCIAMACHY) (Burrows et al., 1995), the Ozone
- 42 Monitoring Instrument (OMI) (Levelt et al., 2006), the GOME-2 (Callies et al., 2000), and the Tropospheric Monitoring
- 43 Instrument (TROPOMI) (Veefkind et al., 2012), have monitored atmospheric ozone and its precursors including NO₂ and
- 44 formaldehyde (HCHO) as a proxy for volatile organic compounds (VOCs). Furthermore, the Geostationary Environment
- 45 Monitoring Spectrometer (GEMS) (Choi et al., 2018; Kim et al., 2020), which was launched on February 18, 2020 (UTC),
- 46 will form a constellation of geostationary satellites including the upcoming Tropospheric Emission: Monitoring of Pollution
- 47 (TEMPO) (Zoogman et al., 2017) and Sentinel-4 platforms, to continuously observe the air quality of the Northern Hemisphere
- 48 during the daytime.
- 49 NO₂ retrievals from space borne hyperspectral measurements are typically conducted using the differential optical absorption
- 50 spectroscopy (DOAS) method (Platt and Stutz, 2008) to first retrieve the view-dependent slant column density (SCD), and
- 51 then radiative transfer models are used to determine the vertical column density (VCD) using an air mass factor (AMF)
- 52 correction. Previous and ongoing space borne instruments use various radiative transfer codes and model input assumptions to
- 53 calculate NO₂ AMF values at fairly coarse spatial resolution. Since the early 2000s, these include GOME (Richter and Burrows,
- 54 2002; Beirle et al., 2003), SCIAMACHY (Sioris et al., 2004), OMI (Boersma et al., 2007), GOME-2 (Richter et al., 2011;
- 55 Valks et al., 2011), and TROPOMI (Geffen et al., 2020). Because the AMF weighting has a large impact on NO₂ retrievals
- 56 using the DOAS method, it is important to use model input assumptions that most accurately match the viewing and
- 57 atmospheric conditions. Several studies have demonstrated the sensitivity of AMF calculations to inaccurate model input
- 58 parameters (e.g., a priori NO₂ vertical profile and aerosol properties) and a priori data (cloud information and surface
- 59 reflectance) (Leitão et al., 2010; Hong et al., 2017; Lorente et al., 2017; Boersma et al., 2018). NO₂ retrievals have also been
- 60 consistently conducted based on surface remote sensing measurements including the Multi-Axis DOAS (MAX-DOAS),
- 61 Système D'Analyse par Observations Zènithales (SAOZ) spectrometer (Pastel et al., 2014), and Pandora (Herman et al., 2009)
- 62 systems. These ground-based measurements can be used as validation references for both airborne and space borne
- 63 measurements.

- 64 Furthermore, NO₂ retrievals from airborne remote sensing instruments, such as the Geostationary Coast and Air Pollution
- 65 Event (GEO-CAPE) Airborne Simulator (GCAS) (Kowalewski and Janz, 2014), the Geostationary Trace gas and Aerosol
- 66 Sensor Optimization (GeoTASO) (Leitch et al., 2014), the Airborne Prism Experiment (APEX; Popp et al., 2012), the Airborne
- 67 Imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP; Meier et al., 2017; Schönhardt et al., 2015),
- 68 the Small Whiskbroom Imager for atmospheric composition monitoring (SWING; Merlaud et al. 2018), and the Spectrolite
- 69 Breadboard Instrument (SBI; Vlemmix et al., 2017; Tack et al., 2019) have also been performed to identify local emissions
- 70 sources and obtain highly resolved horizontal NO₂ distributions.
- 71 Observations using airborne measurements have an advantage as they enable the observation of horizontal distributions of
- 72 trace gases at resolutions higher than space-based satellites and provide data over a wider area than ground-based observations.
- 73 For example, Nowlan et al. (2018) retrieved tropospheric NO₂ VCDs over Houston, Texas, during the Deriving Information
- 74 on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ)
- 75 campaign and identified a high correlation with data retrieved from Pandora. Popp et al. (2012) also presented the morning
- 76 and afternoon NO₂ spatial distribution in Zurich, Switzerland, using APEX. Tack et al. (2017) have conducted high-resolution
- 77 mapping of NO₂ over three Belgium cities (Antwerp, Brussels, and Liège) using APEX and Judd et al. (2020) and Tack et al.
- 78 (2021) compared NO₂ VCDs retrieved from GCAS/GeoTASO and APEX with those obtained from TROPOMI over New
- 79 York City and Antwerp and Brussels, respectively. Merlaud et al. (2013) observed NO₂ VCDs over Antwerp using SWING
- 80 mounted on an unmanned aerial vehicle (UAV). These existing NO₂ retrievals, using airborne measurements, have been useful
- 81 for constraining regional radiative transfer models due to the highly resolved source identification and the ability to tie these
- 82 results to the ground-based observations.
- 83 This work focuses on airborne NO₂ retrievals from GeoTASO. This instrument was developed by Ball Aerospace to reduce
- 84 mission risk for the UV-VIS air quality measurements from geostationary orbit for the GEMS and TEMPO missions (Leitch
- 85 et al., 2014). The retrieval of NO₂, SO₂, and HCHO observed from GeoTASO L1B data using DOAS and principal component
- 86 analysis (PCA) (Wold et al., 1987) was conducted through the DISCOVER-AQ and KORea-United States Air Quality
- 87 (KORUS-AQ) campaign (Nowlan et al., 2016; Judd et al., 2018; Choi et al., 2020; Chong et al., 2020). The KORUS-AQ
- 88 campaign is a joint study between the National Institute of Environmental Research (NIER) and National Aeronautics and
- 89 Space Administration (NASA) to monitor megacity air pollution and transboundary pollution, and to prepare for geostationary
- 90 satellite (i.e., GEMS, TEMPO, and Sentinel-4) air quality observability (of trace gases and aerosols) from May to June 2016.
- 91 Although surface NO₂ concentrations in South Korea are high due to high population density, high traffic volumes, and many
- 92 industrial complexes and thermal power plants, and whereas NO₂ retrieval studies using airborne and ground measurements
- 93 over North America, Europe, China, and Japan have been conducted, data for South Korea remain limited.
- 94 In this study, NO₂ VCD retrieval was conducted using solar backscattered radiance observed from GeoTASO over South
- 95 Korea during the KORUS-AQ campaign. The specific aims of this study are as follows:
- 96 (1) To retrieve tropospheric NO₂ vertical column data using GeoTASO measurements over polluted regions of the Seoul 97 and Busan metropolitan areas and the Anmyeon industrial regions of the Korean Peninsula.

102

103

104

114

119

121

124

- 98 (2) To estimate NO₂ VCD uncertainties using error propagation accounting for spectral fitting errors and AMF 99 uncertainties associated with input data errors, including aerosol optical depth (AOD), single scattering albedo (SSA), 100 aerosol loading height (ALH), and surface reflectance.
 - (3) To compare NO₂ VCDs retrieved from GeoTASO and those obtained from OMI and ground-based Pandora instruments, as well as surface in situ measurements.

2 KORUS-AQ campaign area, measurements, and model simulation

2.1 Campaign area

- As shown in Fig. 1, GeoTASO observations were conducted focusing on highly NO₂-polluted regions in the Seoul and Busan 105
- metropolitan areas and the Anmyeon during the KORUS-AQ campaign. The Seoul metropolitan area (Seoul Special City, 106
- 107 Gyeonggi Province, and Incheon City) is one of the most densely populated areas worldwide, with a population of
- 108 approximately 20 million in 2016. Busan is the second-largest city in South Korea, with a population of approximately 3.4
- million in 2016. Anmyeon is located southwest of Seoul with petrochemical complexes, steel mill works, and thermal power 109
- stations in this area. The background colour in Fig. 1 represents the average NO2 VCD obtained from the OMI during the 110
- KORUS-AQ campaign period, showing over 1×10^{16} molecules cm⁻² over the Seoul metropolitan area. The average 111
- tropospheric NO₂ VCD data were excluded from 30 May 2016 to 9 Jun 2016, when the OMI L2 data did not exist during the 112
- 113 campaign period.

2.2 Pandora

KORUS-AQ

- NO₂ VCDs retrieved from the GeoTASO were validated using those from NASA's Pandora Spectrometer system. The Pandora 115
- spectrometer is a hyper-spectrometer that can provide direct sun measurements of UV/Vis spectra (280-525 nm with a full 116
- width at half maximum (FWHM) of 0.6) for observing atmospheric trace gases. During the KORUS-AQ, eight Pandora 117
- 118 instruments monitored NO₂ and ozone (O3) VCD as depicted as plus symbols in Fig. 1. The retrieved data are available on the

Goddard

Space

Flight

Center

website

- (https://avdc.gsfc.nasa.gov/pub/DSCOVR/Pandora/DATA/KORUS-AQ/). We compared NO₂ VCDs obtained from Pandora 120
- within 1 km and 30 min with those from GeoTASO. Because NO₂ has a short atmospheric lifetime, especially during the
- 122 summer (Shah et al., 2020), its spatial and temporal distributions vary notably A detailed description of Pandora's operation
- 123 during the KORUS-AQ campaign has been previously reported (Herman et al., 2018; Spinei et al., 2018).

NASA's

2.3 Ground-based in situ NO2 measurement

pages

of

- 125 Although the physical units of VCD and surface mixing ratio from in-situ measurements are different, comparison of their
- 126 spatiotemporal variations provides useful information for deriving surface air quality from airborne instruments (e.g., Jeong

- and Hong, 2021a; 2021b and references therein). In this study, we compared the NO₂ VCDs (molecules cm⁻²) retrieved from
- 128 GeoTASO to surface mixing ratios measured by ground-based in-situ monitoring network over South Korea (i.e., Air-Korea,
- a national real-time air quality network; https://www.airkorea.or.kr/). The instruments utilize the chemiluminescence method
- 130 (Kley and McFarland, 1980), and approximately 400 air quality monitoring sites in Korea are registered in the system,
- 131 providing hourly surface NO₂ concentrations. We compared NO₂ VCDs retrieved from GeoTASO within 0.5 km and 30 min
- 132 with NO₂ concentrations obtained from Air-Korea

2.4 GeoTASO measurement

- 134 NO₂ VCDs were retrieved from the L1B radiance dataset (version: V02y) obtained using GeoTASO during the KORUS-AQ
- 135 campaign. The NASA Goddard Space Flight Center conducted the L1B radiance calibration, which included offset and smear
- 136 collection, gain matching, amplifier cross-talk correction, dark rate correction, integration normalisation, sensitivity derivation,
- wavelength registration, geo-registration, non-linearity correction, and ground pixel geolocation (Kowalewski et al., 2017;
- 138 Chong et al., 2020). The detailed specifications of GeoTASO are listed in Table 1. During the KORUS-AQ campaign,
- 139 measurements of air pollutants were made using the GeoTASO on board the NASA Langley Research Center B200 aircraft to
- monitor air quality and long-range transport of pollutants over the Korean Peninsula. In total, 30 observations were conducted
- between 29 April and 10 June 2016. Most observations were made once or twice a day, Fig. 1 shows the flight routes of B200
- and the tropospheric NO₂ VCDs obtained from the OMI during the campaign period. The observations were concentrated in
- the metropolitan areas of Seoul and Busan and the industrial areas of Anmyeon, with a flight altitude of 8,000–9,000 m. Fig.
- 144 2 shows the flowchart for retrieving the tropospheric NO₂ VCD from the GeoTASO.

145 2.4.1 NO₂ slant column density retrieval

- 146 We first retrieved NO₂ SCDs using the DOAS method (Platt, 1994). Nonlinear least square minimisation was used to retrieve
- 147 the NO₂ SCDs which minimize the difference between the measured optical depth and the modelled value in QDOAS software
- 148 (Eq. (1); Danckaert et al., 2012).

$$149 \quad \frac{\ln I(\lambda)}{\ln I_0(\lambda)} = -\left(\sum_{j=1}^m \rho_j \times \sigma'_j(\lambda) + B(\lambda) + R(\lambda) + A(\lambda) + N(\lambda)\right) \tag{1}$$

- 150 Where $I(\lambda)$ is the measured earthshine radiance at wavelength λ ; I_0 is the reference radiance from the sea surface south of Jeju
- 151 Island (red circle in Fig. 1, 32.983°N, 126.392°E) on 1 May 2016. The Community Multiscale Air Quality (CMAQ) modelling
- 152 system data indicated that the NO₂ VCD from the surface to 50 hPa at this point on this day was 6.751×10^{15} molecules cm⁻²;
- 153 ρ_i represents the SCD of each species j; $\sigma_i(\lambda)$ represents the convoluted gas absorption cross-section with the Gaussian
- 154 distribution function (GDF) with GeoTASO FWHM (the UV and VIS range were 0.34-0.49 nm and 0.70-1.00 nm,
- 155 respectively (Nowlan et al., 2016)) at wavelength λ of species j, respectively. The spectral fitting window was selected from
- 156 425 to 450 nm. To determine the wavelength registration more accurately in the narrow fitting window, additional wavelength
- 157 calibration of the spectra for each of the 33 across track pixels was performed using a high-resolution solar reference spectrum

- 158 (Kurucz solar spectrum) (Chance and Kurucz, 2010) with the GDF. The absorption cross-sections of NO₂ (Vandaele et al.,
- 159 1998), O₃ (Bogumil et al., 2000), H₂O, and the ring effect as pseudo-absorbers (Chance and Spurr, 1997) were used to construct
- 160 the model equation; and $B(\lambda)$, $R(\lambda)$, $A(\lambda)$, and $N(\lambda)$ are the broad absorption of the trace gases, extinction by Mie and Rayleigh
- 161 scattering, variation in the spectral sensitivity of the detector or spectrograph, and noise, respectively, which were accounted
- by an 8^{th} order polynomial. An example of the spectral fitting results is presented in Fig. 3.

163 2.4.2 NO₂ AMF calculation

164 AMF, the ratio of SCD to VCD, can be calculated using the scattering weight (ω) and shape factor (S) (Palmer et al., 2001) in

$$166 \quad AMF = \frac{SCD}{VCD} \tag{2}$$

167
$$AMF = AMF_G \int_{z_1}^{z_2} \omega(z) S(z) dz$$
 (3)

$$168 \quad \omega(z) = -\frac{1}{AMF_G} \frac{\partial \ln I_B}{\partial \tau} \tag{4}$$

169
$$S(z) = \frac{\alpha(z)n(z)}{\int_{z_1}^{z_2} \alpha(z)n(z)dz}$$
 (5)

- 170 Where AMF_G represents the geometric AMF, I_B is the earthshine radiance, τ is the optical depth, α is the absorption cross-
- 171 section, and n is the number density of the absorber. NO₂ AMF was calculated using a linearised pseudo-spherical scalar and
- vector discrete ordinate radiative transfer model (VLIDORT, version 2.6; Spurr and Christi, 2014). Aerosol properties, such
- as AOD, SSA, and a priori NO₂ vertical profile information, were simulated using the CMAQ, and surface reflectivity was
- obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6). The surface reflectance product,
- 175 MOD09CMG and MYD09CMG, provide an estimate of the surface spectral reflectance at ground level in the absence of cloud
- and atmospheric absorption or scattering and are available at a 0.05 degree (~5.6 km) spatial resolution. In previous studies
- 177 (Lamsal et al., 2017; Nowlan et al., 2018; Judd et al., 2019; Chong et al., 2020), an AMF were described for both above and
- below aircraft altitude is used to convert NO₂ SCDs to VCDs using Eq. (6)–(8).

179 AMF
$$\uparrow = AMF_G \int_{Z_A}^{Z_{TOA}} \omega(z) S(z) dz$$
 (6)

180 AMF
$$\downarrow = AMF_G \int_{Z_0}^{Z_A} \omega(z) S(z) dz$$
 (7)

181
$$NO_2 \text{ VCD} \downarrow = \frac{NO_2 SCD - AMF \uparrow \cdot NO_2 VCD \uparrow}{AMF \downarrow}$$
 (8)

- Where AMF↑ and AMF↓ are AMF above and below aircraft, respectively, and NO2 VCD↑ represents NO2 VCD above the
- 183 aircraft obtained from a chemical transport model (CTM). However, here we calculated NO₂ VCD↓ by dividing NO₂ SCDs
- by AMF↓ because stratospheric NO₂ (NO₂ VCD↑) concentrations are much lower than tropospheric NO₂ concentrations,
- 185 especially in megacities and industrial areas (Valks et al., 2011).

https://doi.org/10.5194/amt-2022-51

Preprint. Discussion started: 17 February 2022

© Author(s) 2022. CC BY 4.0 License.

187

197

198

2.5 Chemical model description

- 188 Vertical profiles from CMAQ (Byun and Ching, 1999; Byun and Schere, 2006), a CTM, were used to calculate AMFs. CMAQ
- 189 simulations were conducted with a horizontal resolution of 15×15 km and had 27 vertical layers from the surface to 50 hPa.
- 190 The meteorological fields were prepared using the advanced research weather research and forecasting (ARW-WRF) model
- 191 (Skamarock et al., 2008). Anthropogenic emissions were generated based on the KORUS v5.0 model (Woo et al., 2012), and
- 192 biogenic emissions were simulated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1; Guenther
- et al., 2006; 2012). Besides anthropogenic and biogenic emissions, the Fire Inventory from NCAR (FINN; Wiedinmyer et al.,
- 194 2006, 2011) was utilised to update the pyrogenic emission fields. Details of the model descriptions have been provided by Lee
- 195 et al. (2020).

196 3 Results and discussion

3.1 NO₂ VCD retrieval

3.1.1 Seoul metropolitan region

- 199 The population of the Seoul metropolitan region is approximately 20 million, which is approximately 40% of the total
- 200 population of South Korea. It is very rare to obtain high-resolution horizontal NO₂ VCD distributions using airborne
- 201 measurements in the morning and afternoon, especially in Asian megacities. Fig. 4 shows tropospheric NO₂ VCDs over Seoul
- 202 on 9 June 2016, at 9 AM and 3 PM local time (LT). According to the Terra/Aqua CLDMASK data (Ackerman et al., 1998),
- 203 on this day, the cloud fraction was less than 0.3 over the entire domain of Fig. 4.
- 204 In the morning, NO₂ VCDs retrieved from GeoTASO were highly correlated with expressways (red boxes in Fig. 4), such as
- the Gyeongin, Seohaean, and Gyeongbu Expressways, and over major cities with heavy traffic, such as Seoul, Bucheon, Ansan,
- 206 Anyang, and Suwon. GeoTASO observed NO₂ VCD values three-times higher (>3 × 10¹⁶ molecules cm⁻²) in these areas
- 207 compared to the surrounding rural areas. In particular, high NO_2 VCD values above 6×10^{16} molecules cm⁻² were observed
- above the Gyeongin Expressway, which has very heavy traffic in a relatively short section, and the Gunpo Complex Logistics
- 209 zone, where diesel vehicle traffic is also high. The major NO₂ source regions and the regions where high NO₂ VCD values
- 210 were observed were highly consistent at 9 AM because the wind speed at this time—as obtained from the unified model (UM)
- 211 based Regional Data Assimilation and Prediction System (RDAPS) of the Korea Meteorological Administration (KMA)—
- 212 was as low as 0.1 ms⁻¹. The average daily traffic volume of these expressways exceeds 150,000 vehicles, and the total number
- of vehicles registered in these major cities is > 6,000,000, with an average daily mileage per car of over 38 km. Detailed
- 214 information on these cities and expressways is listed in Table 2 and Table 3. Based on the level of vehicular traffic, combustion
- 215 using gasoline and diesel engines leads to high overall emissions of NO₂ in the Seoul metropolitan region (Kendrick et al.,
- 216 2015).

https://doi.org/10.5194/amt-2022-51

Preprint. Discussion started: 17 February 2022

© Author(s) 2022. CC BY 4.0 License.

218219

223

225

228

230

232

234

239

245

Compared to the morning, the afternoon had extremely high tropospheric NO_2 VCD values (exceeding 5×10^{16} molecules cm⁻¹

2) in most of the Seoul metropolitan regions including rural areas, whereas the NO₂ mixing ratio (MR) obtained from Air-

Korea decrease in the afternoon. According to Tzortziou et al. (2018), similar results were retrieved from the Pandora site in

220 Seoul, with higher afternoon NO₂ VCDs than in the morning. This result is presumed to be due to the reason that the amount

of NO₂ produced by chemical conversion of nitric oxide (NO) by O₃ and VOCs in the atmosphere, along with NOx generated

by regional emissions (traffic) in the Seoul metropolitan region, is greater than the amount lost by photolysis and transport to

nearby areas (Herman et al., 2018). In addition, the increase in tropospheric NO₂ VCD in the afternoon is presumed to be due

224 to the accumulation and dispersion of NO₂ according to the change in the planetary boundary layer height (Ma et al., 2013).

3.1.2 Industrial and power plant regions in Anmyeon

226 The high spatial resolution of tropospheric NO₂ VCD from GeoTASO over the Anmyeon industrial region, where many

227 industrial facilities and several power plants are distributed, is shown in Fig. 5. The panels a and b of this figure show

tropospheric NO₂ VCD and NO₂ SCD retrieved from GeoTASO L1B data, respectively, between 13:00 and 17:00 LT on 5

229 June 2016. The panel c depicts the calculated AMF of NO₂ over the domain. The GeoTASO observations clearly detected

moderate and strong NO₂ emission sources over this area: (1) Borycong power plant, (2) the Hyundai integrated steelworks,

231 (3) Dangjin power plant, (4) the Daesan Petrochemical Complex, and (5) Taean power plant. High NO₂ VCD values (> 5 ×

10¹⁶ molecules cm⁻²) were observed over steel mill works, petrochemical complexes, and power plants, whereas values were

comparatively low ($<1 \times 10^{16}$ molecules cm⁻²) over small cities including Seosan, Dangjin, and Boryeong with populations of

less than 0.1 million, and the Seohaean Expressway. In 2016, the annual NOx emissions by the Hyundai steelworks and the

235 Dangjin and Boryeong power plants were 10,271,075, 11,852,972, and 16,788,438 kg year⁻¹, respectively. NO₂ emission rates

236 from major industrial facilities in the Anmyeon region are shown in Table 4. Fig. 5 shows high NO₂ concentrations of major

237 industrial facilities in the Anmyeon region, where fossil fuel combustion in factories and thermal power plants leads to high

238 emissions (Prasad et al., 2012). Due to relatively sparse distribution over rural areas, the Air-Korea measurements did not

detect the major NO₂ plume as shown in Fig. 5a. Thus, airborne remote sensing systems, such as GeoTASO, can effectively

240 compliment the ground-based networks for monitoring minor and major NO₂ emissions, particularly over these remote

241 industrial regions.

242 The GeoTASO data captured not only NO₂ emissions from the chimneys of steelworks and power plants but also its transport

243 by the wind. Fig. 6a and 6b show enlarged views of tropospheric NO₂ SCD retrieved using GeoTASO over the Hyundai

steelworks (red box in Fig. 5) and the Boryeong power plant (white box in Fig. 5). The arrows in Fig. 6 represent the prevailing

wind direction and speed from RDAPS. NO₂ emitted from the chimneys of these sites was transported to the Yellow Sea,

246 travelling distances of over 26 km at speeds of approximately 6 ms-1. According to Chong et al. (2020), similar results were

247 found for SO₂ emitted and transported from these sites.

3.1.3 Busan metropolitan region

- 249 Fig. 7a and 7b show tropospheric NO₂ VCD retrieved from the GeoTASO L1B data over the Busan metropolitan region on 10
- June 2016 in the morning (between 08:00 and 11:00 LT) and afternoon (between 13:00 and 16:00 LT), respectively. High NO₂
- 251 VCDs were observed above urban areas, the port, industrial complexes, and the inter-city road between Busan and Changwon.
- 252 Similar to the Seoul metropolitan regions, it is estimated that combustion using gasoline and diesel engines contributes to the
- high NO₂ emission. In the morning, NO₂ VCDs were high (approximately 3×10^{16} molecules cm⁻²) in the major cities and,
- especially, around Busan Newport, with values exceeding 7×10^{16} molecules cm⁻². In comparison, in the mountainous regions
- between Daegu and Busan, NO₂ VCD values were less than 1×10^{16} molecules cm⁻² during the same period. The spatial
- 256 distribution of tropospheric NO₂ VCDs was similar to that in the Seoul metropolitan regions, which high values over major
- 257 cities and roads (compare Fig. 4 and 7). In Busan, fossil fuel combustion using both road vehicles and ships likely contributes
- 258 to the NO₂ emissions. In the afternoon, unlike Seoul metropolitan region, tropospheric NO₂ VCD over Busan decreased by
- over 3 × 10¹⁶ molecules cm⁻², which also corresponds with NO₂ MR data obtained from the Air-Korea sites. Detailed
- information on these cities is listed in Table 5.

261 **3.2 Error estimation**

- 262 NO₂ VCD retrieval accuracy using the DOAS method depends on both the AMF calculation and spectral fitting error of SCD
- 263 retrieval. Retrieval errors of the NO₂ VCD were estimated using error propagation analysis as expressed in Eq. (9).

$$264 \quad \frac{\varepsilon_{VCD}}{VCD} = \sqrt{\left(\frac{\varepsilon_{SCD}}{SCD}\right)^2 + \left(\frac{\varepsilon_{AMF}}{AMF}\right)^2} \tag{9}$$

- 265 Where ε_{VCD} is the total error of NO₂ VCD. The error of NO₂ SCD (ε_{SCD}) is obtained from the spectral fitting error of NO₂ SCD
- 266 via DOAS spectral fitting. ε_{AMF} indicates the error of NO₂ AMF caused by uncertainties in the model input parameters for
- 267 AMF calculation. Uncertainties in aerosol properties (AOD, SSA, and ALH) and surface reflectance for the RTM calculations
- are known to be the major factors affecting NO₂ AMF accuracy (Boersma et al. 2004; Leitão et al., 2010; Hong et al., 2017).
- 269 Therefore, in this present study, we quantified the NO₂ AMF errors (ε_{AMF}) due to uncertainties in the input parameters
- independent of one another using Eq. (10):

$$271 \quad \varepsilon_{AMF} = \sqrt{(\frac{\partial AMF}{\partial AOD})^2 \sigma AOD^2 + (\frac{\partial AMF}{\partial SSA})^2 \sigma SSA^2 + (\frac{\partial AMF}{\partial ALH})^2 \sigma ALH^2 + (\frac{\partial AMF}{\partial SFR})^2 \sigma SFR^2} = \sqrt{\sum_{i=1}^4 (\frac{\partial AMF}{\partial \chi_i})^2 \sigma_{\chi_i}^2}, \quad (10)$$

- where $\frac{\partial AMF}{\partial \chi_i}$ are partial derivatives of NO₂ AMF with respect to the input parameters (χ_i) , σ_{χ_i} represents the uncertainty of the
- 273 χ_i . The σ of AOD, SSA, ALH, and surface reflectance are assumed as 20%, 4%, 20%, and 20%, respectively, in this study. To
- derive $(\frac{\partial AMF}{\partial x_i})^2$, the true χ_i is input to the RTM to simulate 'true' NO₂ AMF. For the AOD, SSA, ALH, and surface reflectance
- 275 (SFR), perturbed NO₂ AMF was simulated using RTM with $\chi_i + \sigma \chi_j$. $\partial \chi_i$ denotes the difference between the 'true' χ_i and χ_i +
- 276 σχ_i, and ∂AMF is the difference between the 'true' NO₂ AMF simulated with 'true' input values and the new NO₂ AMF
- 277 simulated using input parameters, with the uncertainty of each parameter being $\chi_i + \sigma \chi_i$. The simulation for calculating the

- 278 ε_{AMF} was conducted using the input parameters on 9 June 2016. The error estimation was conducted for the pixels where root
- 279 mean square residual < 0.001 and NO₂ VCD $> 5 \times 10^{15}$ molecules cm⁻² since NO₂ SCD precision is reported to be highly
- 280 decreased in low NO₂ conditions (Hong et al., 2017).
- 281 Table 6 lists the estimated NO₂ VCD error for each sources based on the error propagation method. The total NO₂ VCD error
- 282 was 14.3% with a high portion of NO₂ SCD error (11.9%), showing the importance of accurate DOAS spectral fitting to derive
- 283 NO₂ SCD. The total AMF error due to uncertainties in input parameters was calculated to be 7.3%. Among model input
- parameters, the uncertainties in SFR and SSA had the greater effect on the NO₂ AMF calculation error (5.2% and 4.1%,
- 285 respectively) than those in other input parameters. The NO₂ AMF errors due to uncertainties in AOD and ALH are estimated
- 286 to be 2.0% and 1.0%, respectively. Nevertheless, ALH sensitively affects NO₂ AMF because near the surface where trace
- 287 gases and aerosols are well mixed, aerosols lead to multiple scattering effects and the light absorption of trace gases due to
- 288 increasing light path (Castellanos et al., 2015; Hong et al., 2017). The accuracy of ALH is important to calculate AMF,
- 289 especially in the Asia region where high loadings of aerosol plumes persists throughout the year.
- 290 In this present study, we additionally investigated the spatial distribution of AMF calculation errors associated with
- 291 uncertainties in aerosol properties (AOD, SSA, ALH, and SFR). Fig. 8a and 8b show the percent difference error between the
- 292 calculated AMFs using the CMAQ AOD data with 20% lower (Fig. 8a) and 20% higher (Fig. 8b) values, respectively. The
- 293 AMF decreased and increase by up to 5% with decreasing and increasing AOD, respectively, in the Seoul metropolitan region.
- We estimated that, under low aerosol loading conditions, an increase in AOD near the surface leads to an increase in the
- scattering probability within the surface layer with high NO₂ concentrations.
- 296 Fig. 8c shows the percent difference error between the calculated AMFs using CMAQ SSA data with a 0.04 lower value. The
- 297 AMF decreased with decreasing SSA because the absorption of light increased. The ALH was also found to affect the accuracy
- 298 of the AMF calculations. On 9 June 2016, the average ALH over Seoul was just 0.27 km, meaning that a 20% change in ALH
- 299 equates to approximately 50 m. Nevertheless, the AMF is sensitive to the ALH near the surface as trace gases and aerosols are
- 300 mixed in this layer, and aerosols lead to multiple scattering effects, and the light absorption of trace gases also occurs due to
- 301 increased light paths (Castellanos et al., 2015; Hong et al., 2017). The accuracy of ALH is, therefore, important for calculating
- 302 AMF.

- 303 Fig. 8f and 8g show the percent difference error between the calculated AMFs using the MODIS surface reflectance data with
- 304 20% lower (Fig. 8f) and 20% higher (Fig. 8g) values, respectively. The AMF decreased by about 8% when surface reflectance
- 305 decrease, and vice versa when it increased.

3.3 Validation of NO₂ VCDs retrieved from GeoTASO

- 307 Tropospheric NO₂ VCDs retrieved from GeoTASO L1B data (NO_{2,G}) were compared with those obtained from Pandora
- 308 (NO_{2,P}), and NO₂ MRs (NO_{2,A}) observed from surface in situ instruments at Air-Korea sites. The OMI NO₂ VCDs (NO_{2,O})
- were only available for 10 June during the campaign period. Therefore, we only compared 53 NO_{2,G} and NO_{2,O} data points
- 310 within a radius of 25 km and 30 min, which yielded a correlation coefficient of 0.65 with a slope of 0.43...

3.3.1 Comparing NO₂ VCD from GeoTASO to Surface NO₂ mixing ratios

- 312 To evaluate the spatiotemporal distribution of NO₂ VCDs retrieved from GeoTASO, NO_{2,G} in comparisons to surface spatial
- patterns, NO_{2,G} was compared with NO_{2,A} for GeoTASO data within a radius of approximately 0.5 km and 30 min (Fig. 9).
- 314 The correlation coefficient (R) between NO_{2,G} (molecules cm-²) and NO_{2,A} (ppmv) at 9 AM and 3 PM LT in the Seoul
- 315 metropolitan region was 0.38 and 0.78, respectively. When using only roadside station data from Air-Korea, the R-value for
- 316 the morning increased to 0.83, which implies GeoTASO is more sensitive to emissions from NO₂ source areas, such as
- 317 roadsides.

311

322

- 318 In the Busan metropolitan area, the R-value of the NO_{2,G} and NO_{2,A} data had a correlation coefficient greater than 0.67. This
- 319 reflects the more even horizontal distribution of NO₂ in the afternoon, when diffusion from the source areas had taken place.
- 320 However, for a more accurate comparison, NO₂ VCD data should be converted to NO₂ MR based on mixing layer height,
- 321 temperature, and pressure profile data (Kim et al., 2017; Qin et al., 2017; Jeong and Hong, 2021a).

3.3.2 Comparing NO₂ from GeoTASO and Pandora systems

- 323 To validate the accuracy of NO_{2,G} data, we made a comparison with NO₂ VCD obtained from the Pandora system (NO_{2,P})
- 324 during the KORUS-AQ campaign period. NO_{2,P} obtained from Busan University, Olympic Park, Songchon, Yeoju, and Yonsei
- 325 University Pandora sites on June 5, 9, and 10 were used for the GeoTASO validation (Fig. 1). NO_{2,G} and NO_{2,P} columns at
- 326 these sites are compared in Fig. 10. The NO_{2,G} data available within 30 min from each Pandora measurement time were
- 327 compared with NO_{2,P}. When the radius distance of the observation locations was less than approximately 1 km (black circles
- 328 in Fig. 10), NO_{2,G} and NO_{2,P} were strongly correlated (R = 0.94, with a slope of 1.48). This is considered because of the
- 329 difference of light paths between GeoTASO in nadir viewing mode and Pandora in direct sun mode, particularly when they
- take measurements in a large city with high vertical and horizontal NO₂ variations.
- 331 The correlation was lower with an increase in distance between the Pandora and GeoTASO observation locations; the
- 332 correlation decreased to 0.84 when the radius distance was <5 km. This indicates the impact of the spatial gradient of NO₂
- within that radius not captured using Pandora's local observation. When $NO_{2,P}$ was lower than 1×10^{16} molecules cm⁻², the
- 334 correlation coefficient between NO_{2,G} and NO_{2,P} at both 1 km and 5 km distances was <0.1. The weak correlation at low NO₂
- 335 levels most likely reflects the differences in viewing geometries and the horizontal inhomogeneity of the measured NO₂
- 336 between Pandora and GeoTASO.

4. Conclusions

- 338 For the first time, we have retrieved NO₂ VCD data using airborne GeoTASO observations over the Seoul metropolitan
- 339 region—one of the most populous cities worldwide, the Busan metropolitan region—the second-largest city in South Korea,
- and Anmyeon, with thermal power plants and industrial complexes. By retrieving NO₂ data using GeoTASO L1B radiance, it

https://doi.org/10.5194/amt-2022-51

Preprint. Discussion started: 17 February 2022

© Author(s) 2022. CC BY 4.0 License.

341 was possible to observe the spatial distribution of NO₂ over these metropolitan and industrial regions. In the morning, tropospheric NO₂ VCD over Seoul showed a strong horizontal gradient between rural and urban areas. In urban areas, 342 tropospheric NO₂ VCD was high, with values exceeding 3 × 10¹⁶ molecules cm⁻²; in rural areas, values were typically below 343 1×10^{16} molecules cm⁻². Extremely high values over 10×10^{16} molecules cm⁻² were also observed in both rural and urban 344 areas. In Anmyeon, GeoTASO observations showed NO2 is mainly emitted from the chimneys of industrial complexes and 345 346 thermal power plants, and subsequently transported by wind approximately 30 km to the Yellow Sea of the west coast of the Korean Peninsula. In the Busan metropolitan region, in the morning, tropospheric NO₂ VCDs showed a similar pattern to the 347 Seoul metropolitan region, with high values above the inter-city road. However, in contrast to Seoul, tropospheric NO₂ VCDs 348 349 in Busan decreased in the afternoon. 350 To validate the data retrieved from the GeoTASO system, we compared NO_{2,Q} with NO_{2,Q} obtained from the OMI, NO_{2,A} 351 obtained from Air-Korea, and NO_{2,P} obtained from the Pandora observation system. When the distance between two 352 observations was approximately 25, 0.5, or 1 km within 30 min, the correlation coefficients were relatively high (R = 0.65, 0.67, and 0.84, respectively). However, the correlation between NO_{2,G} and NO_{2,A} over the Seoul metropolitan region was weak 353 354 (R = 0.38) in the morning because of the more pronounced NO₂ horizontal gradient. 355 The GeoTASO system successfully observed NO₂ VCDs with a high horizontal spatial resolution for both metropolitan and industrial regions. This demonstrates that airborne remote sensing measurements, such as those obtained from GeoTASO, 356 357 GCAS, and APEX, can be a very effective tool for the validation of trace gases retrieved from environmental satellites, including the OMI, TROPOMI, and GOME-2; these systems can obtain high-resolution measurements over relatively wide 358 359 areas. However, to validate geostationary environmental satellites with higher spatiotemporal resolutions, such as the GEMS, 360 TEMPO, and sentinel-4, additional validation strategies are needed. First, based on error estimation, aerosol properties should be determined and NO₂ vertical profile retrieval performed using, for example, LIDAR, MAX-DOAS, and sondes. This is 361 important because the accuracy of aerosol properties and the NO₂ vertical profiles affect the accuracy of AMF calculations 362 363 (Leitão et al., 2010; Hong et al., 2017; Lorente et al., 2017; Boersma et al., 2018). Furthermore, as we observed in the Seoul 364 metropolitan area, more closely spaced observations using ground-based remote sensing systems and in situ measurements are

Author contributions

365

366

367 **GH** and **HH** designed and implemented the research. **KL** provided the CTM data. **GH** developed the code for model running

needed as NO₂ displays large horizontal gradients, especially in the morning.

- and performed the RTM simulations. HH and UJ contributed to the analysis of ground-based data. GH and WC carried out
- 369 the sensitivity test. **GH**, **KL**, **HH**, **UJ**, **WC**, and **JJS** revised and edited the paper. **HH** and **UJ** provided constructive comments.
- 370 All authors contributed to this works.

371 Competing interests

372 The authors declare that they have no conflict of interest.

373 Acknowledgements

- 374 Pandora data were obtained from the KORUS-AQ home pages of NASA's Goddard Space Flight Center
- 375 (https://avdc.gsfc.nasa.gov/pub/DSCOVR/Pandora/DATA/KORUS-AQ/). Ground-based NO₂ MR data were obtained
- 376 from Air-Korea (http://www.airkorea.or.kr/web/detailViewDown?pMENU_NO=125/). The authors would like to
- 377 thank KORUS-AQ campaign team for providing the GeoTASO and Pandora data.

378 Funding

- 379 This work was funded by the National Institute of Environmental Research (NIER) of Ministry of Environment [No. NIER-
- 380 2021-01-01-100].

381 References

- 382 Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from
- 383 clouds with MODIS, J. Geophys. Res., 103, 32141–32157, https://doi.org/10.1029/1998JD200032, 1998.
- 384 Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO₂ by GOME measurements: a signature of anthropogenic
- 385 sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003.
- 386 Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO₂ retrieval from space: ERROR
- 387 ANALYSIS FOR TROPOSPHERIC NO₂, J. Geophys. Res., 109, n/a-n/a, https://doi.org/10.1029/2003JD003962, 2004.
- 388 Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P.
- 389 F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO₂ from OMI, Atmos. Chem.
- 390 Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007.
- 391 Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E.,
- 392 Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G.,
- 393 Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite NO₂ retrievals: results
- from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678,
- 395 https://doi.org/10.5194/amt-11-6651-2018, 2018.
- Brauer, M., Hoek, G., Van Vliet, P., Meliefste, K., Fischer, P. H., Wijga, A., Koopman, L. P., Neijens, H. J., Gerritsen, J.,
- 397 Kerkhof, M., Heinrich, J., Bellander, T., and Brunekreef, B.: Air Pollution from Traffic and the Development of Respiratory

https://doi.org/10.5194/amt-2022-51 Preprint. Discussion started: 17 February 2022

- 398 Infections and Asthmatic and Allergic Symptoms in Children, Am J Respir Crit Care Med, 166, 1092-1098,
- 399 https://doi.org/10.1164/rccm.200108-007OC, 2002.
- 400 Burrows, J. P., Hölzle, E., Goede, A. P. H., Visser, H., and Fricke, W.: SCIAMACHY—scanning imaging absorption
- 401 spectrometer for atmospheric chartography, Acta Astronautica, 35, 445–451, https://doi.org/10.1016/0094-5765(94)00278-T,
- 402 1995.
- 403 Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R.,
- 404 Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D.: The Global Ozone Monitoring Experiment (GOME): Mission
- 405 Concept and First Scientific Results, 56, 151–175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2,
- 406 1999.
- 407 BYUN, D.: Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, 1999.
- 408 Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the
- 409 Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51
- 410 https://doi.org/10.1115/1.2128636, 2006.
- 411 Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.: GOME-2-Metop's second-generation sensor for
- 412 operational ozone monitoring, ESA Bull, 1, 28–36, 2000.
- 413 Castellanos, P., Boersma, K. F., Torres, O., and de Haan, J. F.: OMI tropospheric NO₂ air mass factors over South America:
- 414 effects of biomass burning aerosols, Atmos. Meas. Tech., 8, 3831–3849, https://doi.org/10.5194/amt-8-3831-2015, 2015.
- 415 Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference spectrum for earth's atmosphere measurements in
- 416 the ultraviolet, visible, and near infrared, Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 1289-1295,
- 417 https://doi.org/10.1016/j.jqsrt.2010.01.036, 2010.
- 418 Chance, K. V. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering, including molecular parameters for rotational
- 419 Raman scattering, and the Fraunhofer spectrum, Appl. Opt., 36, 5224, https://doi.org/10.1364/AO.36.005224, 1997.
- 420 Choi, S., Lamsal, L. N., Follette-Cook, M., Joiner, J., Krotkov, N. A., Swartz, W. H., Pickering, K. E., Loughner, C. P., Appel,
- 421 W., Pfister, G., Saide, P. E., Cohen, R. C., Weinheimer, A. J., and Herman, J. R.: Assessment of NO₂ observations during
- 422 DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523-2546, https://doi.org/10.5194/amt-13-
- 423 2523-2020, 2020.
- 424 Choi, W. J.: Introducing the geostationary environment monitoring spectrometer, J. Appl. Rem. Sens., 12, 1,
- 425 https://doi.org/10.1117/1.JRS.12.044005, 2018.
- 426 Chong, H., Lee, S., Kim, J., Jeong, U., Li, C., Krotkov, N. A., Nowlan, C. R., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G.,
- 427 Ahn, M.-H., Kang, M., Joiner, J., Haffner, D. P., Hu, L., Castellanos, P., Huey, L. G., Choi, M., Song, C. H., Han, K. M., and
- 428 Koo, J.-H.: High-resolution mapping of SO2 using airborne observations from the GeoTASO instrument during the KORUS-
- 429 AQ field study: PCA-based vertical column retrievals, Remote Sensing of Environment, 241, 111725,
- 430 https://doi.org/10.1016/j.rse.2020.111725, 2020.

https://doi.org/10.5194/amt-2022-51 Preprint. Discussion started: 17 February 2022

- 431 Choo, G.-H., Seo, J., Yoon, J., Kim, D.-R., and Lee, D.-W.: Analysis of long-term (2005–2018) trends in tropospheric NO₂
- 432 percentiles over Northeast Asia, Atmospheric Pollution Research, 11, 1429–1440, https://doi.org/10.1016/j.apr.2020.05.012,
- 433 2020.
- 434 Danckaert, T., Fayt, C., Van Roozendael, M., De Smedt, I., Letocart, V., Merlaud, A., and Pinardi, G.: QDOAS Software user
- 435 manual, Belgian Institute for Space Aeronomy, 2016.
- 436 de Foy, B., Lu, Z., and Streets, D. G.: Satellite NO₂ retrievals suggest China has exceeded its NOx reduction goals from the
- 437 twelfth Five-Year Plan, Sci Rep, 6, 35912, https://doi.org/10.1038/srep35912, 2016.
- van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO₂ slant
- 439 column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315-1335,
- 440 https://doi.org/10.5194/amt-13-1315-2020, 2020.
- 441 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene
- 442 emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210,
- 443 https://doi.org/10.5194/acp-6-3181-2006, 2006.
- 444 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of
- 445 Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling
- 446 biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- 447 Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abuhassan, N.: NO₂ column amounts from ground-based
- 448 Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI
- 449 validation, J. Geophys. Res., 114, D13307, https://doi.org/10.1029/2009JD011848, 2009.
- 450 Herman, J., Spinei, E., Fried, A., Kim, J., Kim, J., Kim, W., Cede, A., Abuhassan, N., and Segal-Rozenhaimer, M.: NO₂ and
- 451 HCHO measurements in Korea from 2012 to 2016 from Pandora spectrometer instruments compared with OMI retrievals and
- 452 with aircraft measurements during the KORUS-AQ campaign, Atmos. Meas. Tech., 11, 4583-4603,
- 453 https://doi.org/10.5194/amt-11-4583-2018, 2018.
- 454 Hong, H., Lee, H., Kim, J., Jeong, U., Ryu, J., and Lee, D.: Investigation of Simultaneous Effects of Aerosol Properties and
- 455 Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals, Remote Sensing, 9, 208,
- 456 https://doi.org/10.3390/rs9030208, 2017.
- 457 Jeong, U., and H. Hong: Assessment of tropospheric concentrations of NO₂ from the TROPOMI/Sentinel-5 Precursor for the
- 458 estimation of long-term exposure to surface NO₂ over South Korea, Remote Sensing, 13, 1877,
- 459 https://doi.org/10.3390/rs13101877, 2021a.
- 460 Jeong, U., and H. Hong: Comparison of total column and surface mixing ratio of carbon monoxide derived from the
- 461 TROPOMI/Sentinel-5 Precursor with In-Situ measurements from extensive ground-based network over South Korea, Remote
- 462 Sensing, 13, 3987, https://doi.org/10.3390/rs13193987, 2021b.

- 463 Judd, L. M., Al-Saadi, J. A., Valin, L. C., Pierce, R. B., Yang, K., Janz, S. J., Kowalewski, M. G., Szykman, J. J., Tiefengraber,
- 464 M., and Mueller, M.: The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles, Front.
- 465 Environ. Sci., 6, 85, https://doi.org/10.3389/fenvs.2018.00085, 2018.
- 466 Judd, L. M., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G., Pierce, R. B., Szykman, J. J., Valin, L. C., Swap, R., Cede, A.,
- 467 Mueller, M., Tiefengraber, M., Abuhassan, N., and Williams, D.: Evaluating the impact of spatial resolution on tropospheric
- 468 NO₂ column comparisons within urban areas using high-resolution airborne data, Atmos. Meas. Tech., 12, 6091–6111,
- 469 https://doi.org/10.5194/amt-12-6091-2019, 2019.
- 470 Judd, L. M., Al-Saadi, J. A., Szykman, J. J., Valin, L. C., Janz, S. J., Kowalewski, M. G., Eskes, H. J., Veefkind, J. P., Cede,
- 471 A., Mueller, M., Gebetsberger, M., Swap, R., Pierce, R. B., Nowlan, C. R., Abad, G. G., Nehrir, A., and Williams, D.:
- 472 Evaluating Sentinel-5P TROPOMI tropospheric NO₂ column densities with airborne and Pandora spectrometers near New
- 473 York City and Long Island Sound, Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, 2020.
- 474 Kendrick, C. M., Koonce, P., and George, L. A.: Diurnal and seasonal variations of NO, NO₂ and PM_{2.5} mass as a function of
- 475 traffic volumes alongside an urban arterial, Atmospheric Environment, 122, 133-141
- 476 https://doi.org/10.1016/j.atmosenv.2015.09.019, 2015.
- 477 Kim, D., Lee, H., Hong, H., Choi, W., Lee, Y., and Park, J.: Estimation of Surface NO₂ Volume Mixing Ratio in Four
- 478 Metropolitan Cities in Korea Using Multiple Regression Models with OMI and AIRS Data, Remote Sensing, 9, 627,
- 479 https://doi.org/10.3390/rs9060627, 2017.
- 480 Kim, J., Jeong, U., Ahn, M.-H., Kim, J. H., Park, R. J., Lee, H., Song, C. H., Choi, Y.-S., Lee, K.-H., Yoo, J.-M., Jeong, M.-
- 481 J., Park, S. K., Lee, K.-M., Song, C.-K., Kim, S.-W., Kim, Y. J., Kim, S.-W., Kim, M., Go, S., Liu, X., Chance, K., Chan
- 482 Miller, C., Al-Saadi, J., Veihelmann, B., Bhartia, P. K., Torres, O., Abad, G. G., Haffner, D. P., Ko, D. H., Lee, S. H., Woo,
- 483 J.-H., Chong, H., Park, S. S., Nicks, D., Choi, W. J., Moon, K.-J., Cho, A., Yoon, J., Kim, S., Hong, H., Lee, K., Lee, H., Lee,
- 484 S., Choi, M., Veefkind, P., Levelt, P. F., Edwards, D. P., Kang, M., Eo, M., Bak, J., Baek, K., Kwon, H.-A., Yang, J., Park, J.,
- 485 Han, K. M., Kim, B.-R., Shin, H.-W., Choi, H., Lee, E., Chong, J., Cha, Y., Koo, J.-H., Irie, H., Hayashida, S., Kasai, Y.,
- 486 Kanaya, Y., Liu, C., Lin, J., Crawford, J. H., Carmichael, G. R., Newchurch, M. J., Lefer, B. L., Herman, J. R., Swap, R. J.,
- 487 Lau, A. K. H., Kurosu, T. P., Jaross, G., Ahlers, B., Dobber, M., McElroy, C. T., and Choi, Y.: New Era of Air Quality
- 488 Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS), 101, E1-E22
- 489 https://doi.org/10.1175/BAMS-D-18-0013.1, 2020.
- 490 Kley, D. and McFarland, M.: Chemiluminescence detector for NO and NO₂, Atmos. Technol.; (United States), 12, 1980.
- 491 Kowalewski, M. G. and Janz, S. J.: Remote sensing capabilities of the GEO-CAPE airborne simulator, SPIE Optical
- 492 Engineering + Applications, San Diego, California, United States, 92181I, https://doi.org/10.1117/12.2062058, 2014.
- 493 Kowalewski, M.G., Janz, S., Al-Saadi, J.A., Good, W., Ruppert, L., Cole, J.: GeoTASO instrument characterization and
- 494 level1b radiance product generation, In: Proceedings of the 1st KORUS-AQ Science Team Meeting, Jeju, South Korea, 27
- 495 February-3 March 2017, 13. 2017

Preprint. Discussion started: 17 February 2022

- 496 Lamsal, L. N., Martin, R. V., Parrish, D. D., and Krotkov, N. A.: Scaling Relationship for NO₂ Pollution and Urban Population
- 497 Size: A Satellite Perspective, Environ. Sci. Technol., 47, 7855–7861, https://doi.org/10.1021/es400744g, 2013.
- 498 Lamsal, L. N., Janz, S. J., Krotkov, N. A., Pickering, K. E., Spurr, R. J. D., Kowalewski, M. G., Loughner, C. P., Crawford, J.
- 499 H., Swartz, W. H., and Herman, J. R.: High-resolution NO₂ observations from the Airborne Compact Atmospheric Mapper:
- 500 Retrieval and validation, J. Geophys. Res. Atmos., 122, 1953–1970, https://doi.org/10.1002/2016JD025483, 2017.
- 501 Latza, U., Gerdes, S., and Baur, X.: Effects of nitrogen dioxide on human health: Systematic review of experimental and
- 502 epidemiological studies conducted between 2002 and 2006, International Journal of Hygiene and Environmental Health, 212,
- 503 271–287, https://doi.org/10.1016/j.ijheh.2008.06.003, 2009.
- 504 Lee, K., Yu, J., Lee, S., Park, M., Hong, H., Park, S. Y., Choi, M., Kim, J., Kim, Y., Woo, J.-H., Kim, S.-W., and Song, C. H.:
- 505 Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues, Geosci. Model
- 506 Dev., 13, 1055–1073, https://doi.org/10.5194/gmd-13-1055-2020, 2020.
- 507 Leitão, J., Richter, A., Vrekoussis, M., Kokhanovsky, A., Zhang, Q. J., Beekmann, M., and Burrows, J. P.: On the improvement
- of NO₂ satellite retrievals-aerosol impact on the airmass factors, Atmos. Meas. Tech., 3, 475–493, https://doi.org/10.5194/amt-
- 509 3-475-2010, 2010.
- Leitch, J. W., Delker, T., Good, W., Ruppert, L., Murcray, F., Chance, K., Liu, X., Nowlan, C., Janz, S. J., Krotkov, N. A.,
- 511 Pickering, K. E., Kowalewski, M., and Wang, J.: The GeoTASO airborne spectrometer project, SPIE Optical Engineering +
- 512 Applications, San Diego, California, United States, 92181H, https://doi.org/10.1117/12.2063763, 2014.
- Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Huib Visser, Johan de Vries, Stammes, P., Lundell, J. O. V.,
- 514 and Saari, H.: The ozone monitoring instrument, IEEE Trans. Geosci. Remote Sensing, 44, 1093-1101,
- 515 https://doi.org/10.1109/TGRS.2006.872333, 2006.
- Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M., Lamsal, L. N., Barkley, M., De Smedt,
- 517 I., Van Roozendael, M., Wang, Y., Wagner, T., Beirle, S., Lin, J.-T., Krotkov, N., Stammes, P., Wang, P., Eskes, H. J., and
- 518 Krol, M.: Structural uncertainty in air mass factor calculation for NO₂ and HCHO satellite retrievals, Atmos. Meas. Tech., 10,
- 519 759–782, https://doi.org/10.5194/amt-10-759-2017, 2017.
- 520 Ma, J. Z., Beirle, S., Jin, J. L., Shaiganfar, R., Yan, P., and Wagner, T.: Tropospheric NO₂ vertical column densities over
- 521 Beijing: results of the first three years of ground-based MAX-DOAS measurements (2008-2011) and satellite validation,
- 522 Atmos. Chem. Phys., 13, 1547–1567, https://doi.org/10.5194/acp-13-1547-2013, 2013.
- 523 Merlaud, A., Constantin, D., Mingireanu, F., Mocanu, I., Maes, J., Fayt, C., Voiculescu, M., Murariu, G., Georgescu, L., Van
- 524 Roozendael, M.: Small whiskbroom imager for atmospheric composition monitoring (SWING) from an unmanned aerial
- 525 vehicle (UAV), in: Proceedings of the 21st ESA Symposium on European Rocket & Balloon Programmes and related Research,
- 526 Thun, Switzerland pp.9–13, 2013.
- 527 Meier, A. C., Schönhardt, A., Bösch, T., Richter, A., Seyler, A., Ruhtz, T., Constantin, D.-E., Shaiganfar, R., Wagner, T.,
- 528 Merlaud, A., Van Roozendael, M., Belegante, L., Nicolae, D., Georgescu, L., and Burrows, J. P.: High-resolution airborne

- 529 imaging DOAS measurements of NO₂ above Bucharest during AROMAT, Atmos. Meas. Tech., 10, 1831-1857,
- 530 https://doi.org/10.5194/amt-10-1831-2017, 2017.
- Merlaud, A., Tack, F., Constantin, D., Georgescu, L., Maes, J., Fayt, C., Mingireanu, F., Schuettemeyer, D., Meier, A. C.,
- 532 Schönardt, A., Ruhtz, T., Bellegante, L., Nicolae, D., Den Hoed, M., Allaart, M., and Van Roozendael, M.: The Small
- 533 Whiskbroom Imager for atmospheric composition monitorinG (SWING) and its operations from an unmanned aerial vehicle
- 534 (UAV) during the AROMAT campaign, Atmos. Meas. Tech., 11, 551–567, https://doi.org/10.5194/amt-11-551-2018, 2018.
- 535 Nowlan, C. R., Liu, X., Leitch, J. W., Chance, K., González Abad, G., Liu, C., Zoogman, P., Cole, J., Delker, T., Good, W.,
- 536 Murcray, F., Ruppert, L., Soo, D., Follette-Cook, M. B., Janz, S. J., Kowalewski, M. G., Loughner, C. P., Pickering, K. E.,
- 537 Herman, J. R., Beaver, M. R., Long, R. W., Szykman, J. J., Judd, L. M., Kelley, P., Luke, W. T., Ren, X., and Al-Saadi, J. A.:
- 538 Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne
- instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013, Atmos. Meas. Tech., 9, 2647–2668,
- 540 https://doi.org/10.5194/amt-9-2647-2016, 2016.
- 541 Nowlan, C. R., Liu, X., Leitch, J. W., Chance, K., A., González Abad, Liu, C., Zoogman, P., Cole, J., Delker, T., Good, W.,
- 542 Murcray, F., Ruppert, L., Soo, D., Follette-Cook, M. B., Janz, S. J., Kowalewski, M. G., Loughner, C. P., Pickering, K. E.,
- 543 Herman, J. R., Beaver, M. R., Long, R. W., Szykman, J. J., Judd, L. M., Kelley, P., Luke, W. T., Ren, W., and Sl-Saadi, J. A.:
- Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne
- 545 instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013, Atmos. Meas. Tech., 9, 2647-2668,
- 546 http://doi.org/10.5194/atm-9-2647-2016, 2016.
- 547 Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook, M. B., Fried, A., González Abad, G.,
- Herman, J. R., Judd, L. M., Kwon, H.-A., Loughner, C. P., Pickering, K. E., Richter, D., Spinei, E., Walega, J., Weibring, P.,
- 549 and Weinheimer, A. J.: Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution
- 550 Events (GEO-CAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11, 5941-5964.
- 551 https://doi.org/10.5194/amt-11-5941-2018, 2018.
- 552 Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr, R. J. D., Kurosu, T. P., Bey, I., Yantosca, R., Fiore, A., and Li,
- 553 Q.: Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from
- the Global Ozone Monitoring Experiment, J. Geophys. Res., 106, 14539–14550, https://doi.org/10.1029/2000JD900772, 2001.
- Pastel, M., Pommereau, J.-P., Goutail, F., Richter, A., Pazmiño, A., Ionov, D., and Portafaix, T.: Construction of merged
- 556 satellite total O₃ and NO₂ time series in the tropics for trend studies and evaluation by comparison to NDACC SAOZ
- 557 measurements, Atmos. Meas. Tech., 7, 3337–3354, https://doi.org/10.5194/amt-7-3337-2014, 2014.
- 558 Platt, U.: Differential absorption spectroscopy (DOAS), Chem. Anal. Series, 127, 27–83, 1994.
- 559 Platt, U., Stutz, J.: Differential absorption spectroscopy, in: Differential Optical Absorption Spectroscopy, Springer, Berlin,
- 560 Heidelberg, pp. 135–174, 2008.

- Popp, C., Brunner, D., Damm, A., Van Roozendael, M., Fayt, C., and Buchmann, B.: High-resolution NO₂ remote sensing
- 562 from the Airborne Prism Experiment (APEX) imaging spectrometer, Atmos. Meas. Tech., 5, 2211-2225,
- 563 https://doi.org/10.5194/amt-5-2211-2012, 2012.
- Prasad, A. K., Singh, R. P., and Kafatos, M.: Influence of coal-based thermal power plants on the spatial-temporal variability
- 565 of tropospheric NO₂ column over India, Environ Monit Assess, 184, 1891–1907, https://doi.org/10.1007/s10661-011-2087-6,
- 566 2012
- 567 Qin, K., Rao, L., Xu, J., Bai, Y., Zou, J., Hao, N., Li, S., and Yu, C.: Estimating Ground Level NO₂ Concentrations over
- 568 Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model, Remote Sensing,
- 569 9, 950, https://doi.org/10.3390/rs9090950, 2017.
- 570 Richter, A. and Burrows, J. P.: Tropospheric NO₂ from GOME measurements, Advances in Space Research, 29, 1673–1683,
- 571 https://doi.org/10.1016/S0273-1177(02)00100-X, 2002.
- 572 Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in tropospheric nitrogen dioxide over China
- 573 observed from space, Nature, 437, 129–132, https://doi.org/10.1038/nature04092, 2005.
- 574 Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO₂ retrieval for the GOME-2 satellite instrument,
- 575 Atmos. Meas. Tech., 4, 1147–1159, https://doi.org/10.5194/amt-4-1147-2011, 2011.
- 576 Schönhardt, A., Altube, P., Gerilowski, K., Krautwurst, S., Hartmann, J., Meier, A. C., Richter, A., and Burrows, J. P.: A wide
- 577 field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft, Atmos. Meas. Tech., 8, 5113-
- 578 5131, https://doi.org/10.5194/amt-8-5113-2015, 2015.
- 579 Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., and Zhang, Q.: Effect of changing NOx lifetime on the
- seasonality and long-term trends of satellite-observed tropospheric NO₂ columns over China, Atmos. Chem. Phys., 20, 1483–
- 581 1495, https://doi.org/10.5194/acp-20-1483-2020, 2020.
- 582 Sioris, C. E., Kurosu, T. P., Martin, R. V., and Chance, K.: Stratospheric and tropospheric NO₂ observed by SCIAMACHY:
- 583 first results, Advances in Space Research, 34, 780–785, https://doi.org/10.1016/j.asr.2003.08.066, 2004.
- 584 Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., Huang, X.-Y., and Duda, M.: A Description of the
- 585 Advanced Research WRF Version 3, UCAR/NCAR, https://doi.org/10.5065/D68S4MVH, 2008.
- 586 Spinei, E., Whitehill, A., Fried, A., Tiefengraber, M., Knepp, T. N., Herndon, S., Herman, J. R., Müller, M., Abuhassan, N.,
- Cede, A., Richter, D., Walega, J., Crawford, J., Szykman, J., Valin, L., Williams, D. J., Long, R., Swap, R. J., Lee, Y., Nowak,
- 588 N., and Poche, B.: The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the
- 589 KORUS-AQ field study, Atmos. Meas. Tech., 11, 4943–4961, https://doi.org/10.5194/amt-11-4943-2018, 2018.
- 590 Spurr, R. and Christi, M.: On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative
- 591 transfer models, Journal of Quantitative Spectroscopy and Radiative Transfer, 142, 109-115,
- 592 https://doi.org/10.1016/j.jqsrt.2014.03.011, 2014.

- Tack, F., Merlaud, A., Iordache, M.-D., Danckaert, T., Yu, H., Fayt, C., Meuleman, K., Deutsch, F., Fierens, F., and Van
- 594 Roozendael, M.: High-resolution mapping of the NO₂ spatial distribution over Belgian urban areas based on airborne APEX
- 595 remote sensing, Atmos. Meas. Tech., 10, 1665–1688, https://doi.org/10.5194/amt-10-1665-2017, 2017.
- 596 Tack, F., Merlaud, A., Meier, A. C., Vlemmix, T., Ruhtz, T., Iordache, M.-D., Ge, X., van der Wal, L., Schuettemeyer, D.,
- 597 Ardelean, M., Calcan, A., Constantin, D., Schönhardt, A., Meuleman, K., Richter, A., and Van Roozendael, M.:
- 598 Intercomparison of four airborne imaging DOAS systems for tropospheric NO₂ mapping—the AROMAPEX campaign, Atmos.
- 599 Meas. Tech., 12, 211–236, https://doi.org/10.5194/amt-12-211-2019, 2019.
- Tack, F., Merlaud, A., Iordache, M.-D., Pinardi, G., Dimitropoulou, E., Eskes, H., Bomans, B., Veefkind, P., and Van
- 601 Roozendael, M.: Assessment of the TROPOMI tropospheric NO₂ product based on airborne APEX observations, Atmos. Meas.
- 602 Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, 2021.
- Tzortziou, M., Parker, O., Lamb, B., Herman, J., Lamsal, L., Stauffer, R., and Abuhassan, N.: Atmospheric Trace Gas (NO₂)
- 604 and O₃) Variability in South Korean Coastal Waters, and Implications for Remote Sensing of Coastal Ocean Color Dynamics,
- 605 Remote Sensing, 10, 1587, https://doi.org/10.3390/rs10101587, 2018.
- Valks, P., Pinardi, G., Richter, A., Lambert, J.-C., Hao, N., Loyola, D., Van Roozendael, M., and Emmadi, S.: Operational
- 607 total and tropospheric NO₂ column retrieval for GOME-2, Atmos. Meas. Tech., 4, 1491–1514, https://doi.org/10.5194/amt-4-
- 608 1491-2011, 2011.
- 609 Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., Mérienne, M. F., Jenouvrier, A., and Coquart,
- 610 B.: Measurements of the NO₂ absorption cross-section from 42 000 cm⁻¹ to 10 000 cm⁻¹ (238–1000 nm) at 220 K and 294 K,
- 611 Journal of Quantitative Spectroscopy and Radiative Transfer, 59, 171–184, https://doi.org/10.1016/S0022-4073(97)00168-4,
- 612 1998.
- Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q.,
- van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R.,
- 615 Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the
- atmospheric composition for climate, air quality and ozone layer applications, Remote Sensing of Environment, 120, 70-83,
- 617 https://doi.org/10.1016/j.rse.2011.09.027, 2012.
- Vlemmix, T., Ge, X., de Goeij, B. T. G., van der Wal, L. F., Otter, G. C. J., Stammes, P., Wang, P., Merlaud, A., Schüttemeyer,
- 619 D., Meier, A. C., Veefkind, J. P., and Levelt, P. F.: Retrieval of tropospheric NO₂ columns over Berlin from high-resolution
- 620 airborne observations with the spectrolite breadboard instrument, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-
- 621 2017-257, in review, 2017.
- 622 Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., O'Neill, S., and Wynne, K. K.: Estimating
- 623 emissions from fires in North America for air quality modeling, Atmospheric Environment, 40, 3419-3432,
- 624 https://doi.org/10.1016/j.atmosenv.2006.02.010, 2006.

https://doi.org/10.5194/amt-2022-51

Preprint. Discussion started: 17 February 2022

© Author(s) 2022. CC BY 4.0 License.

- 625 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire
- 626 INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model
- 627 Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
- 628 Wold, S., Esbensen, K., and Geladi, P.: Principal component analysis, Chemometrics and Intelligent Laboratory Systems, 2,
- 629 37–52, https://doi.org/10.1016/0169-7439(87)80084-9, 1987.
- 630 Woo, J.-H., Choi, K.-C., Kim, H. K., Baek, B. H., Jang, M., Eum, J.-H., Song, C. H., Ma, Y.-I., Sunwoo, Y., Chang, L.-S., and
- 631 Yoo, S. H.: Development of an anthropogenic emissions processing system for Asia using SMOKE, Atmospheric Environment,
- 632 58, 5–13, https://doi.org/10.1016/j.atmosenv.2011.10.042, 2012.
- 633 Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., Hilton, B. B., Nicks, D. K.,
- Newchurch, M. J., Carr, J. L., Janz, S. J., Andraschko, M. R., Arola, A., Baker, B. D., Canova, B. P., Chan Miller, C., Cohen,
- 635 R. C., Davis, J. E., Dussault, M. E., Edwards, D. P., Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J. R.,
- Houck, J., Jacob, D. J., Joiner, J., Kerridge, B. J., Kim, J., Krotkov, N. A., Lamsal, L., Li, C., Lindfors, A., Martin, R. V.,
- 637 McElroy, C. T., McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R., O'Sullivan, E. J., Palmer, P. I., Pierce, R. B., Pippin, M.
- 638 R., Saiz-Lopez, A., Spurr, R. J. D., Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang, H., Wang, J., and
- 639 Chance, K.: Tropospheric emissions: Monitoring of pollution (TEMPO), Journal of Quantitative Spectroscopy and Radiative
- 640 Transfer, 186, 17–39, https://doi.org/10.1016/j.jqsrt.2016.05.008, 2017.

643 644

645 646

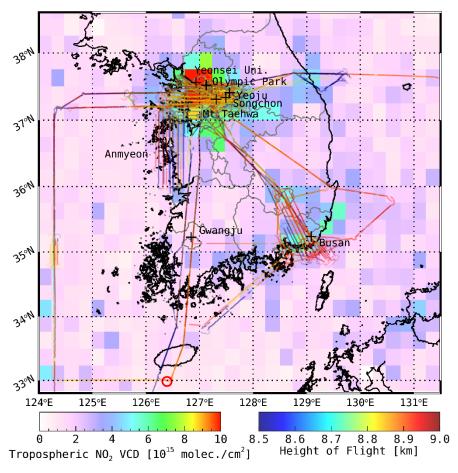


Figure 1. Flight paths of the NASA LaRC B200 aircraft carrying GeoTASO and the average tropospheric NO_2 VCDs obtained from OMI binned to a $0.1^{\circ}\times0.1^{\circ}$ horizontal grid during the KORUS-AQ campaign period. The line colour represents flight height. In this period, the GeoTASO observations focused on megacities (Seoul and Busan) and industrial complex area (Anmyeon) with high tropospheric NO_2 concentrations. The reference spectrum for spectral fitting is obtained from the radiation data under the Jeju Island (marked with red circle).

651652

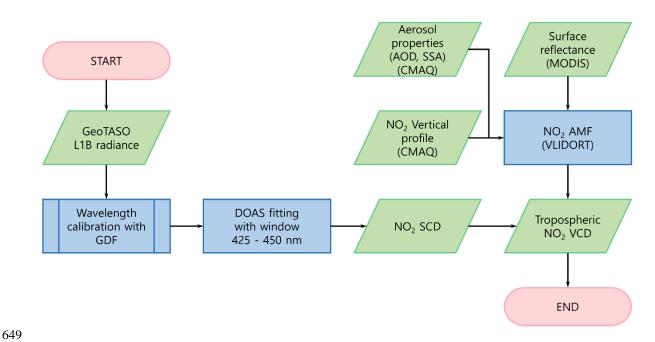


Figure 2. Flowchart of the algorithm for retrieving tropospheric NO₂ data from GeoTASO.

655

656

657

658

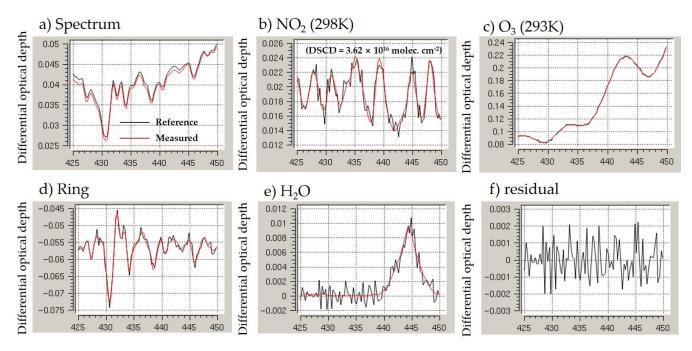


Figure 3. An example of the spectral fitting results of NO_2 retrievals from GeoTASO during the KORUS-AQ campaign (at Gangnam, Seoul on 22 May, 2016). Red and black line in the panel (a) represent measured and reference spectrum, respectively. The panels from (b) to (e) depict examples of spectral fitting results of (b) NO_2 , (c) O_3 , (d) Ring, and (e) H_2O , where red and black lines are absorption cross section of target species and the fitting residual plus the absorption of the target species, respectively. The panel (f) shows fitting residual of this example

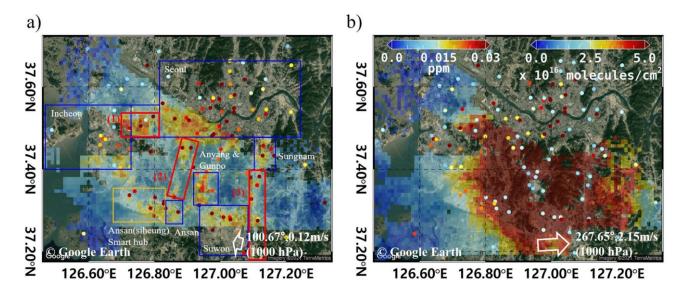


Figure 4. Tropospheric NO₂ VCD, binned to a 0.01°×0.01° horizontal grid, in the Seoul metropolitan region on 9, June 2016 retrieved from GeoTASO: a) at 9 AM and b) at 3 PM. The red boxes represent expressways (counterclockwise from left to right, (1) Gyeongin expressway, (2) Seohaean expressway, and (3) Gyeongbu expressway), the orange box indicates the industrial complex, and the blue boxes indicate the major cities (Seoul, Incheon, Suwon, Bucheon, Anyang, Gunpo, Sungnam, and Ansan) of the Seoul metropolitan region. Colours of the circles depict the NO₂ surface mixing ratio obtained from Air-Korea. The white arrows at the bottom right of the each panel show the wind direction and speed over Anyang, obtained via Unified Model (UM) simulations (background RGB image is from Google Earth; https://www.google.com/maps/).

671

672

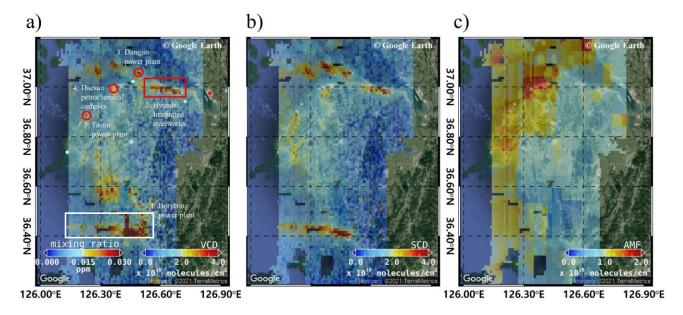


Figure 5. a) Tropospheric NO_2 VCD and b) NO_2 SCD retrieved from GeoTASO, and c) NO_2 AMF calculated using VLIDORT over Anmyeon in South Korea on 5 June 2016. The data were gridded into to a spatial resolution of $0.01^{\circ} \times 0.01^{\circ}$. The red circles and rectangle in panel (a) represent the major NO_2 emission sources, such as steelworks and power plants (background RGB image is from Google Earth; https://www.google.com/maps/).

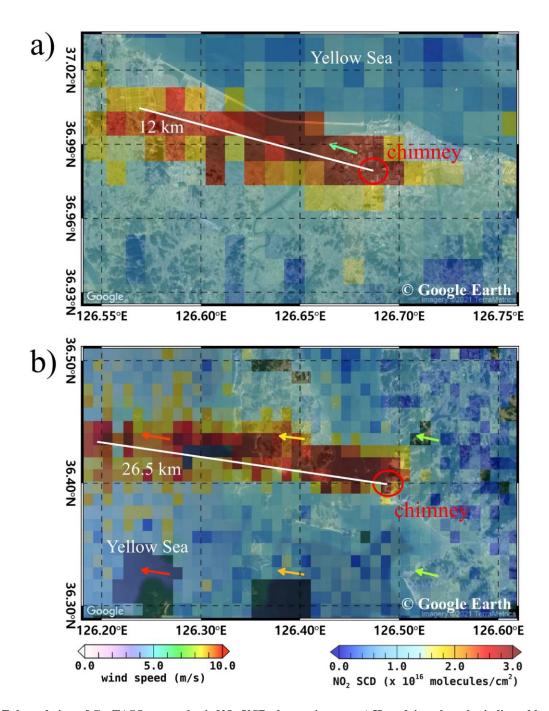


Figure 6. Enlarged view of GeoTASO tropospheric NO₂ VCD observation over a) Hyundai steel works, indicated by the red box in Figure 5, and b) the Boryeong power plant, indicated by the white box in Figure 5. The data were gridded into to a spatial resolution of $0.01^{\circ}\times0.01^{\circ}$. The arrows represent the wind direction and speed (background RGB image is from Google Earth; https://www.google.com/maps/).

676

677

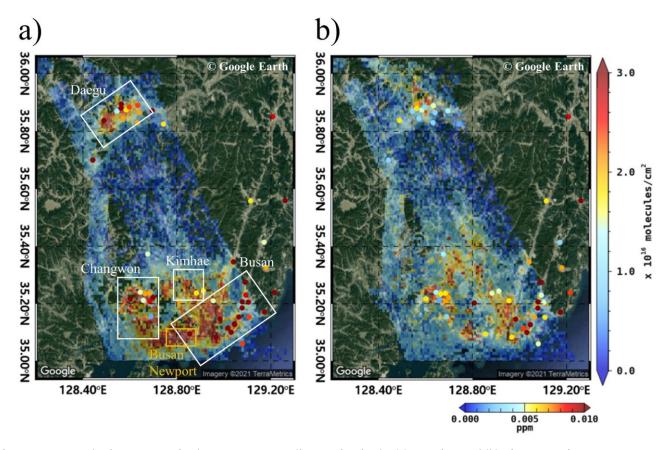


Figure 7. Tropospheric NO₂ VCD in the Busan metropolitan region in the (a) morning and (b) afternoon of 10 June 2016. The data were gridded into to a spatial resolution of 0.01°×0.01°. The white boxes represent major cities such as Busan, Daegu, Changwon, and Kimhae. The orange box represents Busan Newport (background RGB image is from Google Earth; https://www.google.com/maps/).

688

689

690

691

692

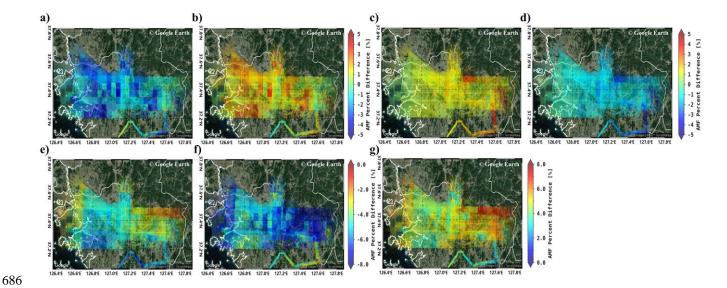


Figure 8. Percentage difference between AMF calculated using the CMAQ model simulation and those using a) 20% lower AOD, b) 20% higher AOD, c) 20% lower aerosol loading height, d) 20% higher aerosol loading height, compared to the model outputs. The percentage difference for AMF calculated using MODIS data and those using e) 4% lower SSA, f) 20% lower surface reflectance, and g) 20% higher surface reflectance (background RGB image is from Google Earth; https://www.google.com/maps/).

695

696

697

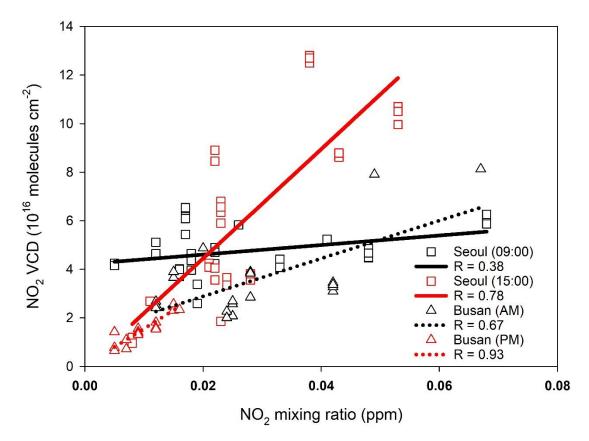


Figure 9. Scatter plot of the NO₂ VCDs retrieved from GeoTASO, and NO₂ surface mixing ratio obtained from Air-Korea. The black and red squares represent the NO₂ data at 9 AM and 3 PM (local time) over the Seoul metropolitan region, respectively. The black and red triangles represent those in the morning and afternoon, over Busan, respectively.

699 700

701

702

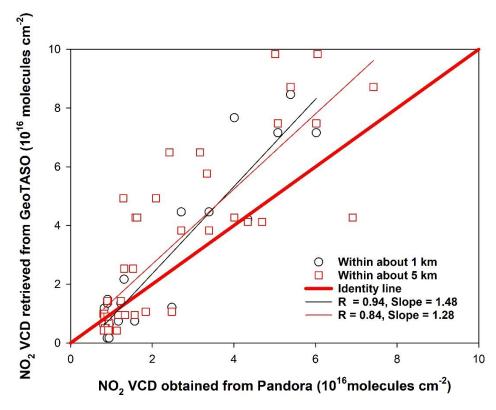


Figure 10. Scatter plot of NO₂ VCDs obtained from Pandora and those retrieved from GeoTASO during Pandora overflight. The black circles and red squares represent the average NO₂ VCD retrieved from GeoTASO within a radius of about 1 km and 5 km from the Pandora site, respectively.

703 Table 1. Summary for GeoTASO instrument and optical specification.

L1B version	V02y	
Cross-track field of view	45°	
NAT	UV: 290–400 nm	
Wavelength	VIS: 415–695 nm	
Spectral resolution (full width at half	UV: ~0.39 nm	
maximum, FWHM)	VIS: ~0.88 nm	
CCD	1,056 (wavelength) × 1,033 (cross-track)	
Spatial resolution before binning	patial resolution before binning ~35 m (along-track) × 7 m (cross-track)	
Spatial resolution after binning	~250 m (along-track) × 250 m (cross-track)	



Table 2. The population, number of registered vehicles, and average mileage per car of major cities in the Seoul metropolitan region obtained from the Korean Statistical Information Service (kosis.kr/eng).

City	Population	Vehicle registration number	Average mileage per car
	(millions)	(thousands)	(km)
Seoul	9.776	3,083	37.1
Incheon	2.914	1,402	41.7
Bucheon	0.848	284	37.2
Ansan	0.744	289	40.8
Anyang	0.596	206	39.6
Gunpo	0.286	87	38.8
Suwon	1.241	467	38.1
Sungnam	0.994	358	36.3

Table 3. Daily average traffic volume on the Gyeongin, Gyeongbu, and Seohaean Expressways obtained using the Traffic Monitoring System (road.re.kr).

Expressway	Daily average traffic volume
Gyeongin Expressway	162,369
Gyeongbu Expressway	173,413
Seohaean Expressway	150,298

Table 4. NO₂ emission rates from major industrial facilities in the Anmyeon region obtained from the Continuous Emission
 Monitoring System of the Korea Environment Corporation (stacknsky.or.kr/eng/main.html).

Industrial facilities	NO ₂ emission rate (2016) (kg/year)	
Boryeong power plant	16,788,438	
Hyundai integrated steelworks	10,271,075	
Dangjin power plant	11,852,972	
Daesan petrochemical complex	3,397,939	
Taean power plant	15,466,022	

Table 5. The population, number of registered vehicles, and average mileage per car of major cities in the Busan metropolitan region obtained from the Korean Statistical Information Service (kosis.kr/eng).

City	Population (millions)	Vehicle registration number (thousands)	Average mileage per car (km)
Busan	3.389	1,295	40.1
Daegu	2.450	1,121	37.1
Changwon	1.080	551	37.5
Kimhae	0.529	250	38.0

716

718 Table 6. Total errors of NO2 VCD caused by uncertainties in NO2 SCD and NO2 AMF.

NO ₂ AMF errors	AOD	2.0%
	SSA	4.1%
	aerosol loading height	1.0%
	surface reflectance	5.2%
	total NO ₂ AMF error	7.3%
	due to aerosol uncertainties	7.0 /0
	NO ₂ SCD error	11.9%
	NO ₂ VCD error	14.3%

719